MATH 521A: Abstract Algebra

Preparation for Exam 3

1. Set $f(x)=x, g(x)=x+2 x^{2}$, both in $\mathbb{Z}_{4}[x]$. Prove that $f \mid g$ and $g \mid f$.
2. Set $f(x)=x+a+b, g(x)=x^{3}-3 a b x+a^{3}+b^{3}$, both in $\mathbb{Q}[x]$. Find $\operatorname{gcd}(f, g)$.
3. Let R be a ring. Characterize all polynomials $f, g \in R[x]$ such that $\operatorname{deg}(f+g)<$ $\max (\operatorname{deg}(f), \operatorname{deg}(g))$.
4. In $F[x]$, prove that "is an associate of" is an equivalence relation.
5. Set $f(x)=x^{n} \in F[x]$. Carefully determine all divisors of $f(x)$.
6. Let $f(x) \in \mathbb{Z}[x]$ be monic. Suppose that $a \in \mathbb{Q}$ and $f(a)=0$. Prove that, in fact, $a \in \mathbb{Z}$.
7. Set $f(x)=3 x^{3}+5 x^{2}+6 x, g(x)=4 x^{4}+2 x^{3}+6 x^{2}+4 x+5$, both in $\mathbb{Z}_{7}[x]$. Use the extended Euclidean algorithm to find $\operatorname{gcd}(f, g)$ and to find polynomials $s(x), t(x)$ such that $\operatorname{gcd}(f, g)=f(x) s(x)+g(x) t(x)$.
8. Determine for which a the polynomial $f(x)=x^{3}+a x^{2}-a x+1 \in \mathbb{Z}_{7}[x]$ is irreducible.
9. Factor $f(x)=x^{4}+x^{3}+6 x^{2}-14 x+16 \in \mathbb{Q}[x]$ into irreducibles.
10. Let p be prime, and consider the polynomial $f(x)=x^{p-1}+x^{p-2}+\cdots+x^{2}+x+1$. Prove that $f(x)$ is irreducible. Hint: You may use without proof the fact that p divides $\binom{p}{a}$ for any a with $1 \leq a \leq p-1$.
11. Let F be a field. We define the "derivative" operator $D: F[x] \rightarrow F[x]$ via

$$
D\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right)=n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\cdots+1 a_{1} .
$$

Prove that this operator satisfies, for all $f, g \in F[x]$ and for all $c \in F$:
(a) $D(f+g)=D(f)+D(g)$;
(b) $D(c f)=c D(f)$;
(c) $D(f g)=f D(g)+D(f) g$
12. Let F, D be as in Problem 11. Suppose $f, g \in F[x]$ and $f^{2} \mid g$. Prove that $f \mid D(g)$. What does this mean if f is a linear polynomial?
13. Let $f(x) \in F[x]$ be irreducible. Suppose that $f(x) \mid g_{1}(x) g_{2}(x) \cdots g_{k}(x)$. Prove that for some i with $1 \leq i \leq k$, we have $f(x) \mid g_{i}(x)$.
14. Let R, S be rings and $\phi: R \rightarrow S$ a ring homomorphism. Define $\tau: R[x] \rightarrow S[x]$ via

$$
\tau\left(a_{n} x^{n}+\cdots+a_{1} x+a_{0}\right)=\phi\left(a_{n}\right) x^{n}+\cdots+\phi\left(a_{1}\right) x+\phi\left(a_{0}\right) .
$$

Prove that τ is a ring homomorphism.
15. For ring $R, a \in R$, and $n \in \mathbb{N}$, we say a has additive order n if $\underbrace{a+a+\cdots+a}=0_{R}$, and for $m<n$ we have $\underbrace{a+a+\cdots+a}_{m} \neq 0_{R}$. We write this $\operatorname{ord}_{R}(a)=n$. Suppose every element of R has an order (not necessarily the same one). Prove that every element of $R[x]$ has an order.

